3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
Price: £4.80
(£4.00 + VAT)
Availability: 71
Model: S7V8F3
Manufacturer: Pololu
Average Rating: Not Rated

Pololu

3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

The S7V8F3 switching step-up/step-down regulator efficiently produces a fixed 3.3 V output from input voltages between 2.7 V and 11.8 V. It's ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below the regulated voltage. The compact (0.45″ × 0.65″) module has a typical efficiency of over 90% and can deliver 500 mA to 1 A across most of the input voltage range.

In typical applications, this regulator can deliver about 1 A continuous when the input voltage is higher than 5 V (stepping down) and 500 mA continuous when the input is lower than 5 V (stepping up); please see the graphs at the bottom of this page for a more detailed characterization. The regulator has short-circuit protection, and thermal shutdown prevents damage from overheating; the board does not have reverse-voltage protection.

For an adjustable-output version of this regulator, consider our step-up/step-down voltage regulator S7V8A.

Features

  • input voltage: 2.7 V to 11.8 V
  • fixed 3.3 V output with +5/-3% accuracy
  • typical continuous output current: 500 mA to 1 A across most combinations of input and output voltages (Actual continuous output current depends on input and output voltages. See Typical Efficiency and Output Current section below for details.)
  • power-saving feature maintains high efficiency at low currents (quiescent current is less than 0.1 mA)
  • integrated over-temperature and short-circuit protection
  • small size: 0.45″ × 0.65″ × 0.1″ (11 × 17 × 3 mm)

Connections

The step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to power down the regulator and put it in a low-power state. The quiescent current in this sleep mode is dominated by the current in the 100k pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 10 µA per volt on VIN (for example, the sleep current with a 5 V input will be 50 µA). The SHDN pin can be driven high (above 1.2 V) to enable the board, or it can be connected to VIN or left disconnected if you want to leave the board permanently enabled.

The input voltage, VIN, should be between 2.7 V and 11.8 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive, and you should be wary of destructive LC spikes (see below for more information).

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. If you are connecting more than about 9 V, using power leads more than a few inches long, or using a power supply with high inductance, we recommend soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND. The capacitor should be rated for at least 16 V.

 

Write Review
Your Name:


Your Review: Note: HTML is not translated!

Rating: Bad            Good

Enter the code in the box below:

3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
Click to enlarge
3.3V Step-Up/Step-Down Voltage Regulator S7V8F3
$ 4.80 New In Stock
Shopping Cart
0 items
 
DELIVERY/PAYMENT

Free Delivery Orders over £50

UK - £2.40 orders under £50
Airmail from £2.95 (+VAT)
More Details...

 
Brands
 
 Check out our videos
Follow us on:
acebook