Sharp GP2Y0A41SK0F Analog Distance Sensor 4-30cm
![]() Click to enlarge |
![]() |
Sharp GP2Y0A41SK0F Analog Distance Sensor 4-30cm
The GP2Y0A41SK0F is the shortest-range Sharp analog distance sensor we carry, featuring a detection range of 1.5″ to 12″ (4 cm to 30 cm). The shorter range gives you higher resolution measurements, and the lower minimum detection distance makes this sensor great for detecting very close objects. The distance is indicated by an analog voltage, making this sensor very easy to use.
The Sharp distance sensors are a popular choice for many projects that require accurate distance measurements. This IR sensor is more economical than sonar rangefinders, yet it provides much better performance than other IR alternatives. Interfacing to most microcontrollers is straightforward: the single analog output can be connected to an analog-to-digital converter for taking distance measurements, or the output can be connected to a comparator for threshold detection. The detection range of this version is approximately 4 cm to 30 cm (1.5″ to 12″); a plot of distance versus output voltage is shown below.
The GP2Y0A41SK0F uses a 3-pin JST connector that connects to our 3-pin JST cable for Sharp distance sensors (not included). It is also simple to solder three wires to the sensor where the connector pins are mounted (see picture). When looking at the back, the three connections from left to right are power, ground, and the output signal.
Feature summary
- operating voltage: 4.5 V to 5.5 V
- average current consumption: 12 mA (typical)
- distance measuring range: 4 cm to 30 cm (1.5″ to 12″)
- output type: analog voltage
- output voltage differential over distance range: 1.9 V (typical)
- response time: 16 ± 4 ms
- package size: 29.5×13.0×13.5 mm (1.16×0.5×0.53")
- weight: 3.5 g (0.12 oz)
Linearizing the output
The relationship between the sensor’s output voltage and the inverse of the measured distance is approximately linear over the sensor’s usable range. The GP2Y0A41SK0F data sheet contains a plot of analog output voltage as a function of the inverse of distance to a reflective object. You can use this plot to convert the sensor output voltage to an approximate distance by constructing a best-fit line that relates the inverse of the output voltage (V) to distance (cm).
Documents
![]() VL53L0X Time-of-Flight Laser Distance Sensor. 200cm Max VL53L0X £10.80 ![]() |
![]() Infrared Transmitter and sensor pair IR-TX-SENSOR £1.56 |
![]() Sharp GP2Y0D815Z0F Digital Distance Sensor 15cm Breakout GP2Y0D815 £7.80 |
![]() Sharp GP2Y0A60SZLF Analog Distance Sensor 10-150cm, 3V GP2Y0A60SZLF £11.88 |
![]() QTR-1A Infra Red Analog Reflectance Sensor QTR-1A £1.99 |
![]() QTR-8RC Infra Red Reflectance Sensor Array QTR-8RC £8.40 |
![]() QTR-1RC Infra Red Reflectance Sensor QTR-1RC £2.04 |
![]() 3-Pin Female JST Cable for Sharp Distance Sensors (30cm) JSTCABLE £0.76 |
Your Review: Note: HTML is not translated!
Rating: Bad Good
Enter the code in the box below: