

12 Channel I2C Servo Controller

Data Sheet

12 Channel Servo Controller via I2C

HOBBYTRONICS.co.uk 12 Channel Servo Controller
 .

© Hobbytronics Version 2.0 Page 2

Introduction

Many microcontroller projects involve the use of
external servos for mechanical control, robotics and
in continuous rotation mode for driving wheels.
Servos typically require the use of one of the use
pulse width modulation (PWM) channels in the
microcontroller. But microcontrollers usually have
only a handful of PWM outputs, and sometimes this
is not enough for the project in hand.

We have programmed a microcontroller to act as a
slave servo controller which can individually
generate 12 pwm output channels suitable for
driving servos (or speed controllers which use servo
signals). Data is easily sent to this slave device via
the I2C protocol.

Each servo can be individually controlled.

No additional components are required as it has its
own built in oscillator clock circuit.

Modes

There are two modes of operation, standard and extended

Standard mode sends pwm signals that vary between 1ms and 2ms. This is the norm for radio control
models and allows the servo to rotate through approx 90 degrees

Extended mode sends pwm signals that vary between 0.6ms and 2.4ms. This allows most servos to
rotate through almost 180 degrees and is more useful in robotics projects.

The default mode is extended

To configure the mode send a value to register address 20

To set mode standard, send value 0
To set mode extended send value 1

See the example Arduino sketch for an example of altering the mode.

HOBBYTRONICS.co.uk 12 Channel Servo Controller
 .

© Hobbytronics Version 2.0 Page 3

Pinout

Specifications

• 12 Servo output channels (SERVO0 through SERVO11)

• I2C interface

• Configurable Slave Address allows up to 8 units to be added to your project

• 64MHz Clock Speed for accurate pwm generation

• 5V or 3.3V operation (If operating at 3.3V, the servos will still require a 5V supply)

• Configurable standard or extended modes

Hardware Configuration

Slave Address

Pins 4, 5 and 6 are used to configure the slave address of the device. The device has a default slave
address of 40, but by tying these pins high or low, the address can be altered. For the default address tie
all the pins low.

Slave Address Address2 (pin4) Address1 (pin5) Address0 (pin 6)
 40 0 0 0
 41 0 0 1
 42 0 1 0
 43 0 1 1
 44 1 0 0
 45 1 0 1
 46 1 1 0
 47 1 1 1

SERVO Signal Output

Servo pulses are generated at 20ms intervals. Each servo pulse duration will be between 1ms and 2ms
(standard) or 0.6ms and 2.4ms (extended).

If the data value for the servo channel is 0, it will have a pulse duration of 1ms (0.6ms)
If the data value for the servo channel is 255, it will have a pulse duration of 2ms (2.4ms)

HOBBYTRONICS.co.uk 12 Channel Servo Controller
 .

© Hobbytronics Version 2.0 Page 4

The servo center position is achieved with a value of 127 which gives a pulse duration of 1.5ms

Servo outputs for each channel will default to value 127 until set via I2C

The output from the microcontroller is sufficient to connect directly to the servo signal wire (normally
coloured orange). The Red Servo wire(s) should be connected to a 5V supply capable of supplying
enough current for all the servos. The black wire(s) are connected to earth

I2C

To set the servo values we need to first send the starting servo register value. This value must always
be sent. Followed by one or more bytes to set the subsequent servos.

E.g. to set all 12 servos

 Send 0
 Send SERVO0 value
 Send SERVO1 value
 Send SERVO2 value
 Send SERVO3 value
 Send SERVO4 value
 Send SERVO5 value
 Send SERVO6 value
 Send SERVO7 value
 Send SERVO8 value
 Send SERVO9 value
 Send SERVO10 value
 Send SERVO11 value

To set just the first servo
 Send 0
 Send SERVO0 value

To set servos 5 and 6
 Send 5
 Send SERVO5 value
 Send SERVO6 value

The remaining SERVO outputs will default to their previous value (or 127 - center position if not
previously set).
I2C will work at the standard data rate of 100kHz rate or less. It may work at the higher data rate of
400kHz but this has not been tested.

HOBBYTRONICS.co.uk 12 Channel Servo Controller
 .

© Hobbytronics Version 2.0 Page 5

Example Arduino Sketch

The following Arduino sketch sweeps each servo from center position to full right, then to full left and back
to center approx once per minute. It is an ideal test to make sure everything is connected properly.

/*

** Wire Master of Hobbytronics 12 channel SERVO Controller

** Sweeps all 12 servos from one end to the other continuously

** Created 04 May 2011

** Version 2 06-Jun-2011

**

** This example code is in the public domain.

** www.hobbytronics.co.uk

*/

#include <Wire.h>

const int servoslave_address=40; // I2C Address of ADC Chip

void setup()

{

 Wire.begin(); // join i2c bus (address optional for master)

 // Optionally set mode to standard

 // – comment out this section is extended mode required

 Wire.beginTransmission(servoslave_address); // transmit to device

 Wire.send(20); // servo register address 20

 Wire.send(0); // send value 0 for standard mode

 Wire.endTransmission(); // stop transmitting

 delay(1); // waits

}

void loop()

{

 unsigned char i,j;

 for(i = 127; i < 255; i++) // goes from center to full right

 {

 Wire.beginTransmission(servoslave_address); // transmit to device

 Wire.send(0); // servo register to start from

 for(j=0;j<12;j++)

 {

 Wire.send(i); // send 12 bytes of data

 }

 Wire.endTransmission(); // stop transmitting

 delay(1); // waits

 }

 for(i = 255; i > 0; i--) // goes from full right to full left

 {

 Wire.beginTransmission(servoslave_address); // transmit to device

 Wire.send(0); // servo register to start from

 for(j=0;j<12;j++)

 {

 Wire.send(i); // send 12 bytes of data

 }

 Wire.endTransmission(); // stop transmitting

 delay(1); // waits

 }

HOBBYTRONICS.co.uk 12 Channel Servo Controller
 .

© Hobbytronics Version 2.0 Page 6

 for(i = 0; i < 127; i++) // goes from full left back to center

 {

 Wire.beginTransmission(servoslave_address); // transmit to device

 Wire.send(0); // servo register to start from

 for(j=0;j<12;j++)

 {

 Wire.send(i); // send 12 bytes of data

 }

 Wire.endTransmission(); // stop transmitting

 delay(1); // waits

 }

 delay(800); // waits for 0.8 seconds

}

