Hy =355
ELEC Wl RONICS O—J 00— o-:?b

12 Channel 12C Servo Controller
Pro* Version

Data Sheet

12 Channel Servo Controller via 12C

HOBBYTRONICS.co.uk

12 Channel Servo Controller Pro*

Introduction

28—
INFUT —

Specifications

SERYO COMTROLLER

Many microcontroller projects involve the use of
external servos for mechanical control, robotics and
in continuous rotation mode for driving wheels.
Servos typically require the use of one of the pulse
width modulation (PWM) channels in the
microcontroller. But microcontrollers usually have
only a handful of PWM outputs, and sometimes this
is not enough for the project in hand.

We have programmed a microcontroller to act as a
slave servo controller which can individually
generate 12 pwm output channels suitable for
driving servos (or speed controllers which use servo
signals). Data is easily sent to this slave device via
the 12C protocol.

Each servo can be individually controlled.

No additional components are required as it has its
own built-in oscillator clock circuit.

12 Servo output channels (SERVOO through SERVO11)
I2C interface
Configurable Slave Address allows up to 4 units to be added to your project
Accurate Servo Pulse Width generation
5V or 3.3V operation.

Configurable standard or extended modes
Programmable Servo Speed
PWM frequency rates from 50Hz to 400Hz
Servo Position Query

Output can be turned ON or OFF

© Hobbytronics

Version 2.0 Page 2

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

Additional Features of the Pro* version over Standard
Version

The main features of the Pro* version over the Standard version. These features will be discussed in
greater detail later in the document.

Adjustable Pulse Frequency

Over and above the standard servo pulse frequency of 50Hz, the frequency can be increased to 66Hz,
80Hz, 100Hz, 133Hz, 200Hz or 400Hz. This is a very useful feature when controlling electronic speed
controllers (ESC’s) as it enables a faster output response to the motors. This is needed in projects such
as Quadrocopters.

Servo Speed
This command limits the speed at which a servo channel’s output value changes, i.e.the rate that the

pulse changes from one extreme to the other (servo through 180 degrees). This can be configured in 1/10
second increments from 0 seconds up to 25 seconds. This is individually configurable for each servo. The
controller will output all the intermediate pulse values.

This is useful for robotics as it enables the Servo Controller to move a servo to an end position at a fixed
rate without the controlling microcontroller having to do anything.

Servo Position Query

You can query the position value of each servo to see its current (electrical) position. This position value
represents the pulse width that the controller is transmitting on the channel. Very useful for robots,
especially when Servo Speed is being used.

Output ON/OFF

The output of all the servo channels can be turned ON and OFF with a single command. The default
startup value is OFF. This allows for configuration and default values to be sent before outputs are turned
ON.

Pinout

The pinout is different to the Standard Servo Controller. They use different chips and are not compatible.

g

o

DW=~ th W k=

MCLR —= [
SERVOD =— [
SERVO1 =+— [
SERVO2 =— [|
SERVO3 =— [
SERVO4 =-— [|

0] =— Voo

19] =— vss

18] —= sERVO9
17[] —= SERVO10
16] —= SERVO11
15[] =— ADDRESSO

SERVOS =— [| 14[]
SERVOE -— [] 13[] =— SDA
SERVOT =— [| 12|] =—= 3CL

SERVOB <+ []

=

11] =— ADDRESS1

© Hobbytronics Version 2.0 Page 3

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

Hardware Configuration

MCLR
The MCLR pin should be connected to VDD by a suitable pullup resistor (10k).
The MCLR pin can be pulled low to reset the device

Slave Address

Pins 15 and 11 are used to configure the slave address of the device. The device has a default slave
address of 40, but by tying these pins high or low, the address can be altered. For the default address tie
all the pins low.

Slave Address Address1 (pin11) AddressO0 (pin 15)

40 0 0

41 0 1

42 1 0

43 1 1
SERVO Values

Servo pulses are generated at 20ms intervals (default 50Hz). Each servo pulse duration is between 1ms
and 2ms (standard) or 0.6ms and 2.4ms (extended).

If the data value for the servo channel is 0, it will have a pulse duration of 1ms (0.6ms)
If the data value for the servo channel is 255, it will have a pulse duration of 2ms (2.4ms)
The servo centre position is achieved with a value of 127 which gives a pulse duration of 1.5ms

The servo value can thus be controlled by the value of a single unsigned char (byte) value.
The output from the microcontroller is sufficient to connect directly to the servo signal wire (normally

coloured orange). The red servo wire(s) should be connected to a 5V supply capable of supplying enough
power for all the servos. The black/brown servo wire(s) are connected to earth.

© Hobbytronics Version 2.0 Page 4

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

12C

12C will function at the standard data rate of 100kHz rate or less. It may work at the higher data rate of
400kHz but this has not been tested.

Setting the Servo value

To set the value for each servo position, first send the starting servo register value. This is a value
between 0 and 11. This value must always be sent. Followed by one or more bytes to set the
subsequent servos values

E.g. to set all 12 servos

Send 0

Send SERVOO0 value
Send SERVOT1 value
Send SERVO2 value
Send SERVOS3 value
Send SERVO4 value
Send SERVOS5 value
Send SERVOS6 value
Send SERVO?7 value
Send SERVOS8 value
Send SERVO9 value
Send SERVO10 value
Send SERVO11 value

To set just the first servo
Send 0
Send SERVOO value

To set servos 5 and 6
Send 5
Send SERVOS5 value
Send SERVOE6 value
The remaining SERVO outputs will default to their previous value.

Turning the Output ON/OFF (Register Address 60)

To turn the output to ALL servo’s ON or OFF, send a 1 (On) or 0 (Off) to register address 60
The default value is 0 (OFF)
See example code later in document

Servo Mode (Register Address 61)

There are two modes of operation, standard and extended.
Standard mode sends pwm signals that vary between 1ms and 2ms. This is the norm for radio control
models and allows the servo to rotate through approx 90 degrees

Extended mode sends pwm signals that vary between 0.6ms and 2.4ms. This allows most servos to
rotate through almost 180 degrees and is more useful in robotics projects.

© Hobbytronics Version 2.0 Page 5

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

The default value is 1 (Extended)
To configure the mode send a value to register address 61

To set mode standard, send value 0
To set mode extended send value 1

See the example Arduino sketch for an example of altering the mode.

PWM Pulse Frequency (Register Address 62)

There are seven PWM frequency settings. The frequency is selected by sending a value between 0 and 6
to register address 62 as in the table below.
The default value is 0 (50Hz)

Value Frequency Available Servo Outputs

0 50Hz 12 (0—11)
1 66Hz 12 (0—11)
2 80Hz 12 (0—11)
3 100Hz 12 (0—11)
4 133Hz 12 (0—11)
5 200Hz 8 (0-7)

6 400Hz 4 (0-3)

With frequencies between 50Hz and 133Hz, all servo outputs are available. At 200 Hz, only 8 servo
outputs are available, and at 400Hz only 4 servo outputs are available.

Servo Speed (Register Address 63 — 74)

This command limits the speed at which each servo channel’s output value changes. l.e.the rate that the
pulse changes from one extreme to the other (servo through 180 degrees). This can be configured in 1/10

second increments from 0 seconds up to 25 seconds. This is individually configurable for each servo.

Reqister Address Servo

63 Servo 0
64 Servo 1
65 Servo 2
66 Servo 3
67 Servo 4
68 Servo 5
69 Servo 6
70 Servo 7
71 Servo 8
72 Servo 9
73 Servo 10
74 Servo 11

© Hobbytronics Version 2.0 Page 6

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

Servo Position Query (Register Address 0 — 11)

As well as setting each servo’s pwm value, you can query the current pwm value for each servo. This is
most useful when using the Servo Speed settings.

Start by setting the register address for the starting servo to be read, just as you would to write the servo
value.

Then request one or more values for the servo(s) you want to read the position of.

See the examples below to see how this works in more detalil

© Hobbytronics Version 2.0 Page 7

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

Example Arduino Sketches

SERVO 1 - SWEEP
The following Arduino sketch sweeps each servo from left position to full right, then back to full left and
repeats. It is an ideal test to make sure everything is connected properly.

/*

** SERVO 1 - SWEEP

* *

** Wire Master of Hobbytronics 12 channel SERVO Controller

** Sweeps all 12 servos from one end to the other continuously
** Created 04 Nov 2011

* %

** This example code is in the public domain.

** www.hobbytronics.co.uk

*/
#include < .h>
const servoslave_address=40; // 12C Address of Servo Chip
()
{
(); // join 12c bus (address optional for master)
(servoslave_address); // transmit to device
(60); // servo register address 60
(1); // Turn Servo Outputs ON
()7 // stop transmitting
}
()
{
Ji
(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<12;3++)
{
(0); // send each servo left
}
(); // stop transmitting
(2000) ; // wait 2 seconds to allow servos to reach end
(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<12; j++)
{
(255); // send each servo right
}
() // stop transmitting
(2000) ; // wait 2 seconds to allow servos to reach end
}

© Hobbytronics Version 2.0 Page 8

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

SERVO 2 - SWEEP 2

We are now going to do the same Servo Sweep, but are going to tidy things up a bit. We will initialize the
start values and create a few functions to make the coding easier.

/*

** SERVO 2 - SWEEP 2

* *

** Wire Master of Hobbytronics 12 channel SERVO Controller

** Sweeps all 12 servos from one end to the other continuously
** Created 04 Nov 2011

* %
** This example code is in the public domain.

** www.hobbytronics.co.uk

*/
#include < .h>
const servoslave_address=40; // I12C Address of Servo Chip

// Write a config value to address register on device

servoConfig(device, address, val) {
(device); // start transmission to device
(address) ; // send register address
(val); // send value to write
(); // end transmission

}

// Write Startup values for each Servo
servoStartup (device) {
unsigned char i;
(device); // start transmission to device
(0); // send register address

(1=0;1<12;1i++) (0); // send 0 as startup value for each servo
// We could easily send different values for
// each servo

() ; // end transmission

}

// Setup our Servo Configuration

()
(); // join i2c bus (address optional for master)

// Set Servo Config and Startup values

servoConfig(servoslave_address, 61, 1); // Extended Mode
servoConfig(servoslave_address, 62, 0); // Servo Update Rate (0-6)
servoStartup (servoslave_address) ; // Send Startup values for servos
servoConfig(servoslave_address, 60, 1); // Servo Output ON
}
()
{
Ji

(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<12;3++)

(0); // send each servo left

© Hobbytronics Version 2.0 Page 9

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

}
(); // stop transmitting
(2000) ; // wait 2 seconds to allow servos to reach end
(servoslave_address); // transmit to device
(0); // servo register to start from
(3=073<12; j++)
{
(255); // send each servo right
}
(); // stop transmitting
(2000) ; // wait 2 seconds to allow servos to reach end

© Hobbytronics Version 2.0 Page 10

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

SERVO 3 - SWEEP 3

We are now going to do the same Servo Sweep, but are going to add Servo Speed of 2 seconds to
Servo0 output. You will notice that a servo connected to Servo 0 output will take 2 seconds to turn from
one end to the other.

/*

** SERVO 3 - SWEEP 3

* %

** Wire Master of Hobbytronics 12 channel SERVO Controller

** Sweeps all 12 servos from one end to the other continuously

** Created 04 May 2011

* %

** This example code is in the public domain.

** www.hobbytronics.co.uk

*/
#include < .h>
const servoslave_address=40; // I12C Address of Servo Chip

// Write a config value to address register on device

servoConfig(device, address, val) {
(device); // start transmission to device
(address) ; // send register address
(val); // send value to write
(); // end transmission

}

// Write Startup values for each Servo
servoStartup (device) {
unsigned char i;
(device); // start transmission to device
(0); // send register address

(1=0;1<12;1i++) (0); // send 0 as startup value for each servo
// We could easily send different values for
// each servo

(); // end transmission

}

// Setup our Servo Configuration

()
(); // join i2c bus (address optional for master)

// Set Servo Config and Startup values

servoConfig(servoslave_address, 61, 1); // Extended Mode
servoConfig(servoslave_address, 62, 0); // Servo Update Rate (0-6)
servoConfig(servoslave_address, 63, 20); // Servo Speed set to 2 seconds (Servo 0)
servoStartup (servoslave_address) ; // Send Startup values for servos
servoConfig(servoslave_address, 60, 1); // Servo Output ON

}

()
{
Ji

(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<12; j++)

© Hobbytronics Version 2.0 Page 11

HOBBYTRONICS.co.uk

12 Channel Servo Controller Pro*

(0); // send each servo left
}
(); // stop transmitting
(2000) ; // v 2 seconds to allow servos to reach end
(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<12; j++)
{
(255); // send each servo right
}
(); // stop transmitting
(2000) ; // walt 2 seconds to allow servos to reach end
}
© Hobbytronics Version 2.0

Page 12

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

SERVO 4 - QUADCOPTER

We will now ramp up the frequency to 400Hz. Only 4 Servo outputs (0 through 3) are available at this
frequency.

You will have to check the output on an oscilloscope to see the frequency.
/*

** SERVO 4 - QUADCOPTER

* *

** Wire Master of Hobbytronics 12 channel SERVO Controller

** Sweeps all 12 servos from one end to the other continuously
** at 400Hz

** Created 04 Nov 2011

* *

** This example code is in the public domain.

** www.hobbytronics.co.uk

*/
#include < .h>
const servoslave_address=40; // I2C Address of Servo Chip

// Write a config value to address register on device

servoConfig(device, address, val) {
(device); // start transmission to device
(address) ; // send register address
(val); // send value to write
(); // end transmission

}

// Write Startup values for each Servo
servoStartup (device) {
unsigned char 1i;
(device); // start transmission to device
(0); // send register address

(1=0;1<12;1++) (0); // send 0 as startup value for each servo
// We could easily send different values for
// each servo

(); // end transmission

}

// Setup our Servo Configuration

()
(); // join i2c bus (address optional for master)

// Set Servo Config and Startup values

servoConfig(servoslave_address, 61, 1); // Extended Mode
servoConfig(servoslave_address, 62, 6); // Servo Update Rate (6=400Hz)
servoStartup (servoslave_address) ; // Send Startup values for servos
servoConfig(servoslave_address, 60, 1); // Servo Output ON
}
()
{
Ji

(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<4; J++)

© Hobbytronics Version 2.0 Page 13

HOBBYTRONICS.co.uk

12 Channel Servo Controller Pro*

(0); // send each servo left
}
(); // stop transmitting
(2000) ; // v 2 seconds to allow servos to reach end
(servoslave_address); // transmit to device
(0); // servo register to start from
(3=0;3<4; J++)
{
(255); // send each servo right
}
(); // stop transmitting
(2000) ; // walt 2 seconds to allow servos to reach end
}
© Hobbytronics Version 2.0

Page 14

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

SERVO 5 — Read Servo Position

In this last example we are going to slowly sweep servo 0 from full left to full right and back again.
We will use the ability to read the servo position and use this to control servo 1.

When servo 0 is going right and gets to halfway we will turn servo 1 fully right.

When servo 0 is going left and gets to halfway we will turn servo 1 fully left.

/*

** SERVO 5 - Read Servo Position

* *

** Wire Master of Hobbytronics 12 channel SERVO Controller (Version 2)
** Created 04 Nov 2011

* %

** This example moves the servo 0 from full left to full right and back
** again with a speed setting of 4 seconds.

** By reading the current position of servo 0 we can determine when it is
** at the halfway point and move servo 1 full right immediately.

** A similar function is applied when the servo 0 is on the way back

** when it reaches half way, servo 1 is returned back to full left.

** This example code is in the public domain.

** www.hobbytronics.co.uk

*/
#include < .h>
const servoslave_address=40; // I2C Address of ADC Chip

Servo_pos;

// Write a config value to address register on device

servoConfig(device, address, val) {
(device); // start transmission to device
(address) ; // send register address
(val); // send value to write
) // end transmission

}

// Send a position command to a Servo

servoPos (device, servo, pos) |
(device); // start transmission to device
(servo) ; // send servo register address
(pos) ; // send position value for servo
(); // end transmission

}

// Write Startup values for each Servo
servoStartup (device) {
ij

// Clear any speed settings for all servos
(device); // start transmission to device

(63); // send register address
(1=0;1<12;1++) (0); // send 0 as speed value for each servo
0 // end transmission
// Set every servo at position 0 - change this if you want start positions

// to be different.
(device); // start transmission to device
(0); // send register address
(1i=0;1<12;1i++) (0); // send 0 as startup value for each servo

© Hobbytronics Version 2.0 Page 15

HOBBYTRONICS.co.uk

12 Channel Servo Controller Pro*

(); // end transmission

}

// Read current position for a Servo
getservoPos (device,
servoPosition;

//Send the Servo number to read
(device); //
(servo_num) ; //

)i //

//Request servo position
(device, 1); //
()

servo_num) {

start transmission to device
send register address (servo number)
end transmission

request 1 byte from slave device

servoPosition = (y; // receive a byte as character
}
servoPosition;
}
setup ()
{
()i // join i2c bus (address optional for master)

// Set Servo Config and Startup values

servoConfig(servoslave_address, 61,
servoConfig(servoslave_address, 62,
servoStartup (servoslave_address) ;

servoConfig(servoslave_address, 63,
servoConfig(servoslave_address, 60,

//
//
//
//
//
//

Extended Mode

Servo Update Rate (0-6)

Send Startup values for servos
and clear speed settings

Servo Speed set to 4 seconds (Servo 0)

Servo Output ON

// Add a delay here to give servos time to move to startup position

1,37

// Send servo 0 full right (speed is 4 seconds)

servoPos (servoslave_address, 0, 255);

// Read position of servo 0, when it gets to center move servo 1 full right

(1)
{
(2); // waits
servo_pos = getservoPos (servoslave_address,
(servo_pos>=125) ;

}

// move servo 1 full RIGHT

servoPos (servoslave_address, 1, 255);

0);

// Read position of servo 0, when it gets to full right, send it back to full left
(1)
{
(2); // waits
© Hobbytronics Version 2.0 Page 16

HOBBYTRONICS.co.uk 12 Channel Servo Controller Pro*

servo_pos = getservoPos (servoslave_address, 0);
(servo_pos>=255) ;

}

// send servo 0 back to full left
servoPos (servoslave_address, 0, 0);

// Read position of servo 0, when it gets to center move servo 1 full LEFT
(1)
{
(2); // waits
servo_pos = getservoPos (servoslave_address, 0);
(servo_pos<=125) ;
}

rvo 1 full LEFT

// move se
(servoslave_address, 1, 0);

servoPos

// wait unti servo 0 gets back to 0, then loop

(1)
{
(2); // waits
servo_pos = getservoPos (servoslave_address, 0);
(servo_pos<=0) ;
}

© Hobbytronics Version 2.0 Page 17

